Scientific publications

PROTECT publications

#99 Bradley, A.T. and Hewitt, I.J. Tipping-point in ice-sheet grounding-zone melting due to ocean water intrusion. Nature Geoscience (in press).

#98 Tollenaar, V., Zekollari, H., Kittel, C. et al. Antarctic meteorites threatened by climate warming. Naure Climate Change (2024). https://doi.org/10.1038/s41558-024-01954-y

#97 Klose, A. K., Coulon, V., Pattyn, F., and Winkelmann, R.: The long–term sea–level commitment from Antarctica, The Cryosphere (in press).

#96 McInnes, K.L., Nicholls, R.J., van de Wal, R. et al. Perspective on Regional Sea-level Rise and Coastal Impacts. Cambridge Prisms: Coastal Futures (in press).

#95 Reinthaler, J. and Paul, F. Methods for Reconstructing Little Ice Age Glacier Surfaces in Novaya Zemlya and the Swiss Alps: Uncertainties and Volume Changes. SSRN (in press).

#94 Hermans, T.H.J et al. Projecting Changes in the Drivers of Compound Flooding in Europe Using CMIP6 Models. Earth’s Future (in press).

#93 Bett, D.T., Bradley, A.T., Williams, C.R. Coupled ice/ocean interactions during future retreat of West Antarctic ice streams in the Amundsen Sea sector. The Cryosphere (in press).

#92 Bult, S.V., Le Bars, D., Haigh, I.D. et al. The effect of the 18.6-year lunar nodal cycle on steric sea level changes. ESS Open Archive (in press).

#91 Jesse, F., Le Bars, D. and Drijfhout, S. Processes explaining increased ocean dynamic sea level in the North Sea in CMIP6. Environmental Research Letters (2024). https://iopscience.iop.org/article/10.1088/1748-9326/ad33d4

#90 Nicholls, R.J. and Shirzaei, M.. Perspective for Science linked to Pervasive land subsidence in China’s major cities. Perspective in Science (2024). https://www.science.org/doi/10.1126/science.ado9986

#89 Bradley, A.T., Bett, D.T., Holland, P.R. et al. A framework for estimating the anthropogenic part of Antarctica’s sea level contribution in a synthetic setting. Nature Communications Earth and Environment (2024). https://doi.org/10.1038/s43247-024-01287-w

#88 Hanna, E. et al. Short- and long-term variability of the Antarctic and Greenland ice sheets. Nature Reviews Earth & Environment (2024). https://doi.org/10.1038/s43017-023-00509-7

#87 Thiéblemont, R., le Cozannet, G., Rohmer, J. et al.Sea-level rise induced change in exposure of low-lying coastal land: implications for coastal conservation strategies. Anthropocene Coasts (2024). https://doi.org/10.1007/s44218-024-00041-1

#86 Brils, M., Kuipers Munneke, P., Jullien, N. et al. Climatic drivers of ice slabs and firn aquifers in Greenland. Geophysical Research Letters (2024). https://doi.org/10.1029/2023GL106613

#85 Le Cozannet, G. and Cazenave, A. Adaptation to sea level rise in France. Rendiconti Lincei (in press)

#84 Tollenaar, V. , Zekollari, H, Pattyn, F. et al. Where the White Continent Is Blue: Deep Learning Locates Bare Ice in Antarctica. Geophysical Research Letters (in press).

#83 Stap, L. B., Berends, C. J., and van de Wal, R. S. W. Miocene Antarctic ice sheet area responds significantly faster than volume to CO2-induced climate change. Clim. Past Discuss (in press).

#82 Coulon, V., Klose, A. K., Kittel, C., Edwards, T., Turner, F., Winkelmann, R., and Pattyn, F. Disentangling the drivers of future Antarctic ice loss with a historically-calibrated ice-sheet model. The Cryosphere (2024). https://doi.org/10.5194/tc-18-653-2024

#81 Thiéblemont, R., Le Cozannet, G., D’Anna, M. et al. Chronic flooding events due to sea-level rise in French Guiana. Scientific Reports 13, 21695 (2023). https://doi.org/10.1038/s41598-023-48807-w

#80 Turner, F. et al. Illustrative multi-centennial projections of global mean sea-level rise and their application (in press).

#79 Burgard, C., Jourdain, N.C., Mathiot, P. et al. Emulating present and future simulations of melt rates at the base of Antarctic ice shelves with neural networks. ESS Open Archive (2023). https://doi.org/10.1029/2023MS003829

#78 Kopp, R.E., Garner, G.G., Hermans, T.H.J., Jha, S, Kumar, O., Slangen, A.B.A. The Framework for Assessing Changes To Sea-level (FACTS) v1.0-rc: A platform for characterizing parametric and structural uncertainty in future global, relative, and extreme sea-level change. The Cryosphere (in press).

#77 Noël, B., van Wessem, M., Wouters, B., Trusel, L., Lhermitte, S. and van den Broeke, M.R. Higher Antarctic ice sheet accumulation and surface melt rates revealed at 2 km resolution. Nature Communications (2023). https://doi.org/10.1038/s41467-023-43584-6

#76 van Calcar, C.J., van de Wal, R.S.W., Blank, B., de Boer, B. and van der Wal, W. Simulation of a fully coupled 3D glacial isostatic adjustment – ice sheet model for the Antarctic ice sheet over a glacial cycle. Geoscientific Model Development (2023). https://doi.org/10.5194/gmd-16-5473-2023

#75 Völz, V. and Hinkel, J. Climate learning scenarios for adaptation decision analyses: Review and classification. Climate Risk Management (2023). https://doi.org/10.1016/j.crm.2023.100512

#74 Philippenko, X. and La Cozannet, G. Social science to accelerate coastal adaptation to sea-level rise. Coastal Futures (in press).

#73 Völz, V. and Hinkel, J. Sea Level Rise Learning Scenarios for Adaptive Decision-Making based on IPCC AR6. Earth’s Future (2023). http://doi.org/10.1029/2023EF003662

#72 Le Cozannet, G., Nicholls, R.J., Durand, G., Slangen, A., Lincke, D. and Chapuis, A. Adaptation to multi-meter sea-level rise should start now. Environmental Research Letters (2023). https://doi.org/10.1088/1748-9326/acef3f

#71 Bevan, S., Cornford, S., Gilbert, L. et al. Amundsen Sea Embayment ice-sheet mass-loss predictions to 2050 calibrated using observations of velocity and elevation change. Journal of Glaciology (2023). https://doi.org/10.1017/jog.2023.57

#70 Keizer, I., Le Bars, D., de Valk, C., Jüling, A., van de Wal, R., and Drijfhout, S.: The acceleration of sea-level rise along the coast of the Netherlands started in the 1960s, EGUsphere (2023). https://doi.org/10.5194/os-19-991-2023

#69 Khojasteh, D., Haghani, M., Nicholls, R.J. et al. The evolving landscape of sea-level rise science from 1990 to 2021. Communications Earth & Environment (2023). https://doi.org/10.1038/s43247-023-00920-4

#68 Berends, C., Stap, L., & Van de Wal, R. (2023). Strong impact of sub-shelf melt parameterisation on ice-sheet retreat in idealised and realistic Antarctic topography. Journal of Glaciology (2023). https://doi.org/10.1017/jog.2023.33

#67 Kopp, R.E., et al. Communicating future sea-level rise uncertainty and ambiguity to assessment users. Nature Climate Change (2023). https://doi.org/10.1038/s41558-023-01691-8, access here.

#66 Reinthaler, J. and Paul, F. Using a Web Map Service to map Little Ice Age glacier extents at regional scales. Annals of Glaciology (2023). https://doi.org/10.1017/aog.2023.39

#65 van der Pol, T., Gussmann, G., Hinkel, J. et al. Decision-support for risk-based land reclamation in the Maldives. Climate risk management (2023). https://doi.org/10.1016/j.crm.2023.100514

#64 Hirschfeld, D. et al., Practionner needs to adapt to sea-level rise: distilling information from global workshops. Climate risk management (2023). https://doi.org/10.1016/j.cliser.2024.100452

#63 van den Broeke, M.R., Kuipers Munneke, P. and Noël, B. Contrasting current and future surface melt rates on the ice sheets of Greenland and Antarctica: lessons from in situ observations and climate models. PLOS Climate (2023). https://doi.org/10.1371/journal.pclm.0000203

#62 Berends, C.J., van de Wal, R.S.W., van den Akker, T. and Lipscomb, W.H. Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response. The Cryosphere (2023). https://doi.org/10.5194/tc-17-1585-2023

#61 Malagón-Santos, V., Slangen, A.B.A, Hermans, T.H.J, et al. Improving Statistical Projections of Ocean Dynamic Sea-level Change Using Pattern Recognition Techniques. Ocean Science (2023). https://doi.org/10.5194/os-19-499-2023

#60 Scanlan, K.M., Rutishauser, A. and Simonsen, B.S. Observing the near-surface properties of the Greenland ice sheet. Geophysical Research Letters (2023). https://doi.org/10.1029/2022GL101702

#59 Gómez-Valdivia, F., Holland, P.R., Siahaan, A. et al. Projected West Antarctic ocean warming caused by an expansion of the Ross Gyre. Geophysical Research Letters (2023). https://doi.org/10.1029/2023GL102978

#58 Hermans, T., Malagón-Santos, V., Katsman, C.A. et al. The Timing of Decreasing Coastal Flood Protection Due to Sea-Level Rise. Nature Climate Change (2023). https://doi.org/10.1038/s41558-023-01616-5

#57 Hinkel, J., Garcin, M., Gussmann, G., et al. Co-creating a coastal climate service to prioritise investments in erosion prevention and sea-level rise adaptation in the Maldives. Climate Services (2023). https://doi.org/10.1016/j.cliser.2023.100401

#56 Scherrenberg, M. D. W., Berends, C. J., Stap, L. B., and van de Wal, R. S. W.: Interactions between the Northern-Hemisphere ice sheets and climate during the Last Glacial Cycle. Clim. Past Discuss (2023). https://doi.org/10.5194/cp-19-399-2023

#55 Jordan, J., Gudmundsson, G.H., Jenkins, A., Stokes, C.R. et al. Increased warm water intrusions could cause mass loss in East Antarctica within 200 years. Nature Communications (2023). https://doi.org/10.1038/s41467-023-37553-2

#54 Hirschfeld, D., Bell, R., Behar, D., Nicholls, R. et al. A Global Survey of the application of Sea-Level Projections. Nature Communications Earth & Environment (2023). https://doi.org/10.1038/s43247-023-00703-x

#53 van Wessem, J.M., van den Broeke, M.R., Wouters, B. and Lhermitte. S.. Variable temperature thresholds for melt pond formation on Antarctic ice shelves. Nature Climate Change (2023). https://doi.org/10.1038/s41558-022-01577-1

#52 Holland, P. et al. Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries. The Cryosphere (2022). https://doi.org/10.5194/tc-16-5085-2022

#51 Slangen, A.B.A., Palmer, M.D., Camargo, C.M.L. et al. The evolution of 21st century sea-level projections from IPCC AR5 to AR6 and beyond. Coastal Futures (2022). https://doi.org/10.1017/cft.2022.8

#50 Lincke, D., Hinkel, J., Mengel, M., Nicholls, RJ. Understanding the drivers of coastal flood exposure and risk from 1860 to 2100. Earths Future (2022). http://dx.doi.org/10.1029/2021EF002584 

#49 Burgard, C. Jourdain, N.C., Reese, R. et al. An assessment of basal melt parameterisations for Antarctic ice shelves. The Cryosphere (2022). https://doi.org/10.5194/tc-16-4931-2022

#48 Rohmer, J., Thieblemont, R., Le Cozannet, G., Goelzer, H. and Durand, G. Improving interpretation of sea-level projections through a machine-learning-based local explanation approach. The Cryosphere (2022). https://doi.org/10.5194/tc-16-4637-2022

#47 Nienhuis, J.H., Kim, W., Milne, G.A. et al. River Deltas and Sea-Level Rise. Annu. Rev. Earth Planet. Sci. (2022). https://doi.org/10.1146/annurev-earth-031621-093732

#46 Jourdain, N.C., Mathiot, P., Burgard, C., Caillet, J. and Kittle, C. Ice shelf basal melt rates in the Amundsen Sea at the end of the 21st century. Geophysical Research Letters (2022). https://doi.org/10.1029/2022GL100629

#45 Noël, B., Lenaerts, J.T. M., Lipscomb, W.H., Thayer-Calder, K., and van den Broeke, M.R. Peak refreezing in the Greenland firn layer under future warming scenarios. Nature Communications (2022). Accessible here: https://rdcu.be/cZPvz

#44 van de Wal, R. S. W., Nicholls, R. J.,Behar, D. et al. A high-end estimate of sea-level rise for practitioners. Earth and Space Science Open Archive (2022). https://doi.org/10.1029/2022EF002751

#43 Armstrong McKay, D.I. et al. (2022): Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science (2022). doi.org/10.1126/science.abn7950

#42 Fang, J., Nicholls,R.J., Brown, S., Lincke, D., Hinkel, J. et al. Benefits of subsidence control for coastal flooding in China. Nature Communications (2022). https://doi.org/10.1038/s41467-022-34525-w

#41 Huai, B., van den Broeke, M.R., Reijmer, C.H. and Noël. B. A daily, 1 km resolution Greenland rainfall climatology (1958-2020) from statistical downscaling of a regional atmospheric climate model. Journal of Geophysical Research: Atmosphere (2022). https://doi.org/10.1029/2022JD036688

#40 van Tiggelen, M., Smeets, P.C.J.P., Reijmer, C.H.,et al. Observed and parameterised roughness lengths for momentum and heat over rough ice surfaces. Journal of Geophysical Research: Atmosphere (2023). https://doi.org/10.1029/2022JD036970 

#39 Berends, C.J., Goelzer, H., Reerink, T.J., Stap, L.B. and van de Wal, R.S.W. Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0). Geoscientific Model Development (2022). https://doi.org/10.5194/gmd-15-5667-2022

#38 Compagno, L., Huss, M., Zekollari, H. et al. Future growth and decline of High Mountain Asia’s ice-dammed lakes and associated risk. Communications Earth & Environment (2022). https://doi.org/10.1038/s43247-022-00520-8

#37 Le Cozannet, G., Nicholls, R.J., Van de Wal, R.,  Sparrow, M.D., Li, J. and  Billy, J. Editorial: Climate Services for Adaptation to Sea-Level Rise. Frontiers in Marine Science (2022). https://doi.org/10.3389/fmars.2022.943079

#36 Stokes, C.R., Abram, N.J., Bentley, M.J., Edwards, T.L., et al. Response of the East Antarctic Ice Sheet to Past and Future Climate Change. Nature (2022). https://doi.org/10.1038/s41586-022-04946-0. Download the accepted manuscript here.

#35 Zekollari, H., Huss, M., Farinotti, D., Lhermitte, S. Ice-dynamical Glacier Evolution Modelling – A review. Reviews of Geophysics (2022). https://doi.org/10.1029/2021RG000754

#34 Compagno, L., Huss, M., Miles, E.S. et al. Modelling supraglacial debris-cover evolution from the single glacier to the regional scale: an application to High Mountain Asia. The Cryosphere (2022). https://doi.org/10.5194/tc-16-1697-2022

#33 Kazmierczak, E., Sun, S., Coulon, V. and Pattyn, F. Subglacial hydrology modulates basal sliding response of the Antarctic ice sheet to climate forcing. The Cryosphere (2022). https://doi.org/10.5194/tc-16-4537-2022

#32 Slangen, A.B.A., Haasnoot, M. and Winter, G. Rethinking Sea-Level Projections using Families and Timing Differences. Earth’s future (2022). https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021EF002576

#31 Stap, L.B., Brends, C.J., Scherenberg, M.D.W, et al. Net effect of ice-sheet–atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability. The Cryosphere (2022). https://doi.org/10.5194/tc-16-1315-2022

#30 van Dalum, C.T., van de Berg, W.J. and van den Broeke, M. Sensitivity of Antarctic surface climate to a new spectral snow albedo and radiative transfer scheme in RACMO2.3p3. The Cryosphere (2022). https://doi.org/10.5194/tc-16-1071-2022

#29 Hansen, N., Simonsen, S.B., Boberg, F. et al. Brief communication: Impact of common ice mask in surface mass balance estimates over the Antarctic ice sheet. The Cryosphere (2022). https://doi.org/10.5194/tc-16-711-2022

#28 Noël, B., Aðalgeirsdóttir, G., Pálsson, F. et al. North Atlantic cooling is slowing down mass loss of Icelandic glaciers. Geophysical Research Letters (2022). https://doi.org/10.1029/2021GL095697

#27 Durand, G., Van den Broeke, M., Le Cozannet, G, Edwards, T. et al. Sea-Level Rise: From Global Perspectives to Local Services. Frontiers in Marine Science (2022). https://doi.org/10.3389/fmars.2021.709595

#26 Boberg, F., Mottram, R., Hansen, N., Yang, S. and Langen, P.L. ncertainties in projected surface mass balance over the polar ice
sheets from dynamically downscaled EC-Earth models. The Cryosphere (2022). https://doi.org/10.5194/tc-16-17-2022

#25 Zhongyang, H., Kuipers Munneke, P., Lhermitte, S., Izeboud, M., Van den Broeke, M. Improving surface melt estimation over the Antarctic Ice Sheet using deep learning: a proof of concept over the Larsen Ice Shelf. The Cryosphere (2021). https://doi.org/10.5194/tc-15-5639-2021

#24 Bisaro, A., Hinkel, J., Le Cozannet, G. et al. Global climate services: a typology of global decisions influenced by climate risk. Frontiers in Marine Science (2021). https://doi.org/10.3389/fmars.2021.728687

#23 Klose, A.K., Wunderling, N., Winkelmann R., and Donges, J.F. What do we mean, ‘tipping cascade’? Environmental Research Letters (2021). https://iopscience.iop.org/article/10.1088/1748-9326/ac3955

#22 Nicholls, R. J., Beaven, R., Stringfellow, A., et al. Coastal landfills and rising sea levels: a challenge for the 21st century. Frontiers in Marine Science (2021). https://doi.org/10.3389/fmars.2021.710342

#21 Beaumet, J., Déqué, M., Krinner, G., et al. Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections. The Cryosphere (2021). https://doi.org/10.5194/tc-15-3615-2021

#20 Huai, B., van den Broeke, M.R., Reijmer, C.H. and, Cappellen, J. Quantifying rainfall in Greenland: a combined observational and modelling approach. Journal of Applied Meteorology and Climatology (2021). https://doi.org/10.1175/JAMC-D-20-0284.1

#19 Mottram, R., Hansen, N., Kittel, C., et al. What is the Surface Mass Balance of Antarctica? An Intercomparison of Regional Climate Model Estimates. The Cryosphere (2021). https://doi.org/10.5194/tc-15-3751-2021

#18 Hansen, N., Langen, P.L., Boberg, F. et al. Downscaled surface mass balance in Antarctica: impacts of subsurface processes and large-scale atmospheric circulation. The Cryosphere (2021). https://doi.org/10.5194/tc-2021-69

#17 Coulon, V., Bulthuis, K., Whitehouse, P.L., et al. Contrasting responses of West and East Antarctic ice sheets to Glacial Isostatic Adjustment. Journal of Geophysical Research: Earth Surface (2021). https://doi.org/10.1029/2020JF006003

#16 Amory, C., Kittel, C., Le Toumelin, L. et al. Performance of MAR (v3.11) in simulating the drifting-snow climateand surface mass balance of Adelie Land, East Antarctica. Geoscientific Model Development (2021). https://doi.org/10.5194/gmd-14-3487-2021

#15 Kittel, C., Amory, C., Agosta, C., et al. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. The Cryosphere (2021). https://doi.org/10.5194/tc-15-1215-2021

#14 Krebs-Kanzow, U., Gierz, P., Rodehacke, C.B., et al. The diurnal Energy Balance Model (dEBM): A convenient surface mass balance solution for ice sheets in Earth System modeling. The Cryosphere (2021). https://doi.org/10.5194/tc-15-2295-2021

#13 van Wessem, J. M., Steger, C.R., Wever, N. and van den Broeke, M.R. An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979-2016. The Cryosphere (2021). https://doi.org/10.5194/tc-15-695-2021

#12 Edwards, T., Nowicki, S., Marzeion, B. et al. Projected land ice contributions to 21st century sea level rise. Nature (2021). https://www.nature.com/articles/s41586-021-03302-y#disqus_. Download the publication here.

#11 Noël, B., van Kampenhout, L., Lenaerts,J. T. M., et al. A 21st Century Warming Threshold for Sustained Greenland Ice Sheet Mass Loss. Geophysical Research Letters (2021). https://doi.org/10.1029/2020GL090471

#10 Jakobs, C.L., Reijmer, C.H., van den Broeke, M.R., et al. Spatial Variability of the Snowmelt-Albedo Feedback in Antarctica. Journal of Geophysical Research: Earth Surface (2021). https://doi.org/10.1029/2020JF005696

#9 Nicholls, R.J., Hanson, S.E., Lowe, J.A., et al. Integrating new sea-level scenarios into coastal risk and adaptation assessments: an on-going process. Wires Climate Change (2021). https://doi.org/10.1002/wcc.706

#8 Nicholls, R.J., Lincke, D., Hinkel, J., et al. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change (2021). https://www.nature.com/articles/s41558-021-00993-z. Download the pdf here.

#7 Delhasse, A., Hanna, E., Kittel, C., Fettweis, X. Brief communication: CMIP6 does not suggest any atmospheric blocking increase in summer over Greenland by 2100. International Journal of Climatology (2020). https://doi.org/10.1002/joc.6977

#6 Donat-Magnin, M., Jourdain, N. C., Kittel, C., Agosta, C., Amory, C., Gallée, H., Krinner, G., and Chekki, M. Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet. The Cryosphere (2021). https://doi.org/10.5194/tc-15-571-2021

#5 Hofer, S., Lang, C., Amory, C. et al. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6. Nature Communication 116289 (2020). https://doi.org/10.1038/s41467-020-20011-8

#4 Payne, A., Nowicki, S., Abe-Ouchi, A. et al. Future sea level change under CMIP5 and CMIP6 scenarios from the Greenland and Antarctic ice sheets, Geophysical Research Letters (2021). https://doi.org/10.1029/2020GL091741

#3 Fettweis, X., Hofer, S., Krebs-Kanzow, U. et al. GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. The Cryosphere, 14, 1–24 (2020). https://doi.org/10.5194/tc-14-3935-2020

#2 Huai, B., van den Broeke, M. and Reijmer, C. Long term surface energy balance of the western Greenland Ice Sheet and the role of large-scale circulation variability. The Cryosphere, 14, 4181–4199 (2020). https://tc.copernicus.org/articles/14/4181/2020/

#1 Krinner, G., Kharin, V., Roehrig, R. et al. Historically-based run-time bias corrections substantially improve model projections of 100 years of future climate change. Commun Earth Environ 1, 29 (2020). https://doi.org/10.1038/s43247-020-00035-0