Scientific publications

PROTECT publications

#75 Völz, V. and Hinkel, J. Climate learning scenarios for adaptation decision analyses: Review and classification. Climate Risk Management (2023).

#74 Philippenko, X. and La Cozannet, G. Social science to accelerate coastal adaptation to sea-level rise. Coastal Futures (in press).

#73 Völz, V. and Hinkel, J. Sea Level Rise Learning Scenarios for Adaptive Decision-Making based on IPCC AR6. Earth’s Future (in press).

#72 Le Cozannet, G., Nicholls, R.J., Durand, G., Slangen, A., Lincke, D. and Chapuis, A. Adaptation to multi-meter sea-level rise should start now. Environmental Research Letters (2023).

#71 Bevan, S., Cornford, S., Gilbert, L. et al. Amundsen Sea Embayment ice-sheet mass-loss predictions to 2050 calibrated using observations of velocity and elevation change. Journal of Glaciology (in press).

#70 Keizer, I., Le Bars, D., de Valk, C., Jüling, A., van de Wal, R., and Drijfhout, S.: The acceleration of sea-level rise along the coast of the Netherlands started in the 1960s, EGUsphere (2023).

#69 Khojasteh, D., Haghani, M., Nicholls, R.J. et al. The evolving landscape of sea-level rise science from 1990 to 2021. Communications Earth & Environment (2023).

#68 Berends, C., Stap, L., & Van de Wal, R. (2023). Strong impact of sub-shelf melt parameterisation on ice-sheet retreat in idealised and realistic Antarctic topography. Journal of Glaciology (2023).

#67 Kopp, R.E., et al. Communicating future sea-level rise uncertainty and ambiguity to assessment users. Nature Climate Change (in press).

#66 Reinthaler, J. and Paul, F. Using a Web Map Service to map Little Ice Age glacier extents at regional scales. Annals of Glaciology (2023).

#65 van der Pol, T., Gussmann, G., Hinkel, J. et al. Decision-support for risk-based land reclamation in the Maldives. (2023).

#64 Hirschfeld, D. et al., Practionner needs to adapt to sea-level rise: distilling information from global workshops. (in press).

#63 van den Broeke, M.R., Kuipers Munneke, P. and Noël, B. Contrasting current and future surface melt rates on the ice sheets of Greenland and Antarctica: lessons from in situ observations and climate models. PLOS Climate (in press).

#62 Berends, C.J., van de Wal, R.S.W., van den Akker, T. and Lipscomb, W.H. Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response. The Cryosphere (2023).

#61 Malagón-Santos, V., Slangen, A.B.A, Hermans, T.H.J, et al. Improving Statistical Projections of Ocean Dynamic Sea-level Change Using Pattern Recognition Techniques. Ocean Science (2023).

#60 Scanlan, K.M., Rutishauser, A. and Simonsen, B.S. Observing the near-surface properties of the Greenland ice sheet. Geophysical Research Letters (in press).

#59 Gómez-Valdivia, F., Holland, P.R., Siahaan, A. et al. Projected West Antarctic ocean warming caused by an expansion of the Ross Gyre. Geophysical Research Letters (in press).

#58 Hermans, T., Malagón-Santos, V., Katsman, C.A. et al. The Timing of Decreasing Coastal Flood Protection Due to Sea-Level Rise. Nature Climate Change (2023).

#57 Hinkel, J., Garcin, M., Gussmann, G., et al. Co-creating a coastal climate service to prioritise investments in erosion prevention and sea-level rise adaptation in the Maldives. Climate Services (in press).

#56 Scherrenberg, M. D. W., Berends, C. J., Stap, L. B., and van de Wal, R. S. W.: Interactions between the Northern-Hemisphere ice sheets and climate during the Last Glacial Cycle. Clim. Past Discuss (in press).

#55 Jordan, J., Gudmundsson, G.H., Jenkins, A., Stokes, C.R. et al. Increased warm water intrusions could cause mass loss in East Antarctica within 200 years. Nature Communications (2023).

#54 Hirschfeld, D., Bell, R., Behar, D., Nicholls, R. et al. A Global Survey of the application of Sea-Level Projections. Nature Communications Earth & Environment (2023).

#53 van Wessem, J.M., van den Broeke, M.R., Wouters, B. and Lhermitte. S.. Variable temperature thresholds for melt pond formation on Antarctic ice shelves. Nature Climate Change (2023).

#52 Holland, P. et al. Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries. The Cryosphere (in press).

#51 Slangen, A.B.A., Palmer, M.D., Camargo, C.M.L. et al. The evolution of 21st century sea-level projections from IPCC AR5 to AR6 and beyond. Coastal Futures (in press).

#50 Lincke, D., Hinkel, J., Mengel, M., Nicholls, RJ. Understanding the drivers of coastal flood exposure and risk from 1860 to 2100. Earths Future (2022). 

#49 Burgard, C. Jourdain, N.C., Reese, R. et al. An assessment of basal melt parameterisations for Antarctic ice shelves. The Cryosphere (2022).

#48 Rohmer, J., Thieblemont, R., Le Cozannet, G., Goelzer, H. and Durand, G. Improving interpretation of sea-level projections through a machine-learning-based local explanation approach. The Cryosphere (2022).

#47 Nienhuis, J.H., Kim, W., Milne, G.A. et al. River Deltas and Sea-Level Rise. Annu. Rev. Earth Planet. Sci. (in press)

#46 Jourdain, N.C., Mathiot, P., Burgard, C., Caillet, J. and Kittle, C. Ice shelf basal melt rates in the Amundsen Sea at the end of the 21st century. Geophysical Research Letters (2022).

#45 Noël, B., Lenaerts, J.T. M., Lipscomb, W.H., Thayer-Calder, K., and van den Broeke, M.R. Peak refreezing in the Greenland firn layer under future warming scenarios. Nature Communications (2022). Accessible here:

#44 van de Wal, R. S. W., Nicholls, R. J.,Behar, D. et al. A high-end estimate of sea-level rise for practitioners. Earth and Space Science Open Archive (2022).

#43 Armstrong McKay, D.I. et al. (2022): Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science (2022).

#42 Fang, J., Nicholls,R.J., Brown, S., Lincke, D., Hinkel, J. et al. Benefits of subsidence control for coastal flooding in China. Nature Communications (2022).

#41 Huai, B., van den Broeke, M.R., Reijmer, C.H. and Noël. B. A daily, 1 km resolution Greenland rainfall climatology (1958-2020) from statistical downscaling of a regional atmospheric climate model. Journal of Geophysical Research: Atmosphere (2022).

#40 van Tiggelen, M., Smeets, P.C.J.P., Reijmer, C.H.,et al. Observed and parameterised roughness lengths for momentum and heat over rough ice surfaces. Journal of Geophysical Research: Atmosphere (2023). 

#39 Berends, C.J., Goelzer, H., Reerink, T.J., Stap, L.B. and van de Wal, R.S.W. Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0). Geoscientific Model Development (2022).

#38 Compagno, L., Huss, M., Zekollari, H. et al. Future growth and decline of High Mountain Asia’s ice-dammed lakes and associated risk. Communications Earth & Environment (2022).

#37 Le Cozannet, G., Nicholls, R.J., Van de Wal, R.,  Sparrow, M.D., Li, J. and  Billy, J. Editorial: Climate Services for Adaptation to Sea-Level Rise. Frontiers in Marine Science (2022).

#36 Stokes, C.R., Abram, N.J., Bentley, M.J., Edwards, T.L., et al. Response of the East Antarctic Ice Sheet to Past and Future Climate Change. Nature (2022). Download the accepted manuscript here.

#35 Zekollari, H., Huss, M., Farinotti, D., Lhermitte, S. Ice-dynamical Glacier Evolution Modelling – A review. Reviews of Geophysics (2022).

#34 Compagno, L., Huss, M., Miles, E.S. et al. Modelling supraglacial debris-cover evolution from the single glacier to the regional scale: an application to High Mountain Asia. The Cryosphere (2022).

#33 Kazmierczak, E., Sun, S., Coulon, V. and Pattyn, F. Subglacial hydrology modulates basal sliding response of the Antarctic ice sheet to climate forcing. The Cryosphere (2022).

#32 Slangen, A.B.A., Haasnoot, M. and Winter, G. Rethinking Sea-Level Projections using Families and Timing Differences. Earth’s future (2022).

#31 Stap, L.B., Brends, C.J., Scherenberg, M.D.W, et al. Net effect of ice-sheet–atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability. The Cryosphere (2022).

#30 van Dalum, C.T., van de Berg, W.J. and van den Broeke, M. Sensitivity of Antarctic surface climate to a new spectral snow albedo and radiative transfer scheme in RACMO2.3p3. The Cryosphere (2022).

#29 Hansen, N., Simonsen, S.B., Boberg, F. et al. Brief communication: Impact of common ice mask in surface mass balance estimates over the Antarctic ice sheet. The Cryosphere (2022).

#28 Noël, B., Aðalgeirsdóttir, G., Pálsson, F. et al. North Atlantic cooling is slowing down mass loss of Icelandic glaciers. Geophysical Research Letters (2022).

#27 Durand, G., Van den Broeke, M., Le Cozannet, G, Edwards, T. et al. Sea-Level Rise: From Global Perspectives to Local Services. Frontiers in Marine Science (2022).

#26 Boberg, F., Mottram, R., Hansen, N., Yang, S. and Langen, P.L. ncertainties in projected surface mass balance over the polar ice
sheets from dynamically downscaled EC-Earth models. The Cryosphere (2022).

#25 Zhongyang, H., Kuipers Munneke, P., Lhermitte, S., Izeboud, M., Van den Broeke, M. Improving surface melt estimation over the Antarctic Ice Sheet using deep learning: a proof of concept over the Larsen Ice Shelf. The Cryosphere (2021).

#24 Bisaro, A., Hinkel, J., Le Cozannet, G. et al. Global climate services: a typology of global decisions influenced by climate risk. Frontiers in Marine Science (2021).

#23 Klose, A.K., Wunderling, N., Winkelmann R., and Donges, J.F. What do we mean, ‘tipping cascade’? Environmental Research Letters (2021).

#22 Nicholls, R. J., Beaven, R., Stringfellow, A., et al. Coastal landfills and rising sea levels: a challenge for the 21st century. Frontiers in Marine Science (2021).

#21 Beaumet, J., Déqué, M., Krinner, G., et al. Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections. The Cryosphere (2021).

#20 Huai, B., van den Broeke, M.R., Reijmer, C.H. and, Cappellen, J. Quantifying rainfall in Greenland: a combined observational and modelling approach. Journal of Applied Meteorology and Climatology (2021).

#19 Mottram, R., Hansen, N., Kittel, C., et al. What is the Surface Mass Balance of Antarctica? An Intercomparison of Regional Climate Model Estimates. The Cryosphere (2021).

#18 Hansen, N., Langen, P.L., Boberg, F. et al. Downscaled surface mass balance in Antarctica: impacts of subsurface processes and large-scale atmospheric circulation. The Cryosphere (2021).

#17 Coulon, V., Bulthuis, K., Whitehouse, P.L., et al. Contrasting responses of West and East Antarctic ice sheets to Glacial Isostatic Adjustment. Journal of Geophysical Research: Earth Surface (2021).

#16 Amory, C., Kittel, C., Le Toumelin, L. et al. Performance of MAR (v3.11) in simulating the drifting-snow climateand surface mass balance of Adelie Land, East Antarctica. Geoscientific Model Development (2021).

#15 Kittel, C., Amory, C., Agosta, C., et al. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. The Cryosphere (2021).

#14 Krebs-Kanzow, U., Gierz, P., Rodehacke, C.B., et al. The diurnal Energy Balance Model (dEBM): A convenient surface mass balance solution for ice sheets in Earth System modeling. The Cryosphere (2021).

#13 van Wessem, J. M., Steger, C.R., Wever, N. and van den Broeke, M.R. An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979-2016. The Cryosphere (2021).

#12 Edwards, T., Nowicki, S., Marzeion, B. et al. Projected land ice contributions to 21st century sea level rise. Nature (2021). Download the publication here.

#11 Noël, B., van Kampenhout, L., Lenaerts,J. T. M., et al. A 21st Century Warming Threshold for Sustained Greenland Ice Sheet Mass Loss. Geophysical Research Letters (2021).

#10 Jakobs, C.L., Reijmer, C.H., van den Broeke, M.R., et al. Spatial Variability of the Snowmelt-Albedo Feedback in Antarctica. Journal of Geophysical Research: Earth Surface (2021).

#9 Nicholls, R.J., Hanson, S.E., Lowe, J.A., et al. Integrating new sea-level scenarios into coastal risk and adaptation assessments: an on-going process. Wires Climate Change (2021).

#8 Nicholls, R.J., Lincke, D., Hinkel, J., et al. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change (2021). Download the pdf here.

#7 Delhasse, A., Hanna, E., Kittel, C., Fettweis, X. Brief communication: CMIP6 does not suggest any atmospheric blocking increase in summer over Greenland by 2100. International Journal of Climatology (2020).

#6 Donat-Magnin, M., Jourdain, N. C., Kittel, C., Agosta, C., Amory, C., Gallée, H., Krinner, G., and Chekki, M. Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet. The Cryosphere (2021).

#5 Hofer, S., Lang, C., Amory, C. et al. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6. Nature Communication 116289 (2020).

#4 Payne, A., Nowicki, S., Abe-Ouchi, A. et al. Future sea level change under CMIP5 and CMIP6 scenarios from the Greenland and Antarctic ice sheets, Geophysical Research Letters (2021).

#3 Fettweis, X., Hofer, S., Krebs-Kanzow, U. et al. GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. The Cryosphere, 14, 1–24 (2020).

#2 Huai, B., van den Broeke, M. and Reijmer, C. Long term surface energy balance of the western Greenland Ice Sheet and the role of large-scale circulation variability. The Cryosphere, 14, 4181–4199 (2020).

#1 Krinner, G., Kharin, V., Roehrig, R. et al. Historically-based run-time bias corrections substantially improve model projections of 100 years of future climate change. Commun Earth Environ 1, 29 (2020).