PROTECT publications
#135 Jager, E., Gillet-Chaulet, F., Champollion, N., Millan, R., Goelzer, H., and Mouginot, J. The future of Upernavik Isstrøm through ISMIP6 framework: Sensitivity analysis and Bayesian calibration of ensemble prediction. EGUsphere (in press).
#134 Kazmierczak, E., Gregov, T., Coulon, V., and Pattyn, F. A fast and unified subglacial hydrological model applied to Thwaites Glacier, Antarctica. EGUsphere (in press).
#133 Zekollari, H., Huss, M., Schuster, L., Maussion, F., Rounce, D. R., Aguayo, R., Champollion, N., Compagno, L., Hugonnet, R., Marzeion, B., Mojtabavi, S., and Farinotti, D. 21st century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations. EGUsphere (in press).
#132 Völz, V. et al. Learning about Sea Level Rise Uncertainty improves Coastal Adaptation Decisions. Earth’s Future (2024). https://doi.org/10.1029/2024EF004704
#131 Wunderling, N. et al. Climate tipping point interactions and cascades: a review. Earth System Dynamics (2024). https://doi.org/10.5194/esd-15-41-2024
#130 Lincke, D. and Hinkel, J. Coastal Migration due to 21st Century Sea-Level Rise. Earth’s Future (2021) https://doi.org/10.1029/2020EF001965
#129 Hinkel, J. et al. Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood Risk. Earth’s Future (2021) https://doi.org/10.1029/2020EF001882
#128 van der Linden, E. C., Le Bars, D., Lambert, E., and Drijfhout, S. Antarctic contribution to future sea level from ice shelf basal melt as constrained by ice discharge observations. The Cryosphere (2023). https://doi.org/10.5194/tc-17-79-2023
#127 Surawy-Stepney, T., Hogg, A. E., Cornford, S. L., and Hogg, D. C. Mapping Antarctic crevasses and their evolution with deep learning applied to satellite radar imagery, The Cryosphere (2023). https://doi.org/10.5194/tc-17-4421-2023
#126 Beckmann, J. and Winkelmann, R. Effects of extreme melt events on ice flow and sea level rise of the Greenland Ice Sheet. The Cryosphere (2023). https://doi.org/10.5194/tc-17-3083-2023
#125 Bachner, G., Lincke, D. and Hinkel, J. The macroeconomic effects of adapting to high-end sea-level rise via protection and migration. Nature Communication (2022). https://doi.org/10.1038/s41467-022-33043-z
#124 Martin M.A., Sendra O.A., Bastos A., et al. Ten new insights in climate science 2021: a horizon scan. Global Sustainability (2021) https://doi.org/10.1017/sus.2021.25
#123 Seroussi, H. et al. Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty. The Cryosphere. https://doi.org/10.5194/tc-17-5197-2023
#122 Graversen, R.G., Heiskanen, T., Bintanja, R. et al. Abrupt increase in Greenland melt enhanced by atmospheric wave changes. Climate Dynamics (2024). https://doi.org/10.1007/s00382-024-07271-6
#121 Garbe, J., Zeitz, M., Krebs-Kanzow, U., and Winkelmann, R. The evolution of future Antarctic surface melt using PISM-dEBM-simple. The Cryosphere (2023). https://doi.org/10.5194/tc-17-4571-2023
#120 Mathiot, P. and Jourdain, N. C.: Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario. Ocean Science (2023). https://doi.org/10.5194/os-19-1595-2023
#119 Delhasse, A., Beckmann, J., Kittel, C., and Fettweis, X. Coupling MAR (Modèle Atmosphérique Régional) with PISM (Parallel Ice Sheet Model) mitigates the positive melt–elevation feedback. The Cryosphere (2024). https://doi.org/10.5194/tc-18-633-2024
#118 Scherrenberg, M. D. W., Berends, C. J., Stap, L. B., and van de Wal, R. S. W. Modelling feedbacks between the Northern Hemisphere ice sheets and climate during the last glacial cycle. Climate of the Past (2023). https://doi.org/10.5194/cp-19-399-2023
#117 Tebaldi, C. et al. The hazard components of representative key risks. The physical climate perspective. Climate risk management (2023). https://doi.org/10.1016/j.crm.2023.100516
#116 Feldmann, J., Reese, R., Winkelmann, R., and Levermann, A. Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations. The Cryosphere (2022). https://doi.org/10.5194/tc-16-1927-2022
#115 Cook, S. et al. Committed Ice Loss in the European Alps Until 2050 Using a Deep-Learning-Aided 3D Ice-Flow Model With Data Assimilation. Geophysical Research Letters (2023). https://doi.org/10.1029/2023GL105029
#114 Løkkegaard, A. et al. Greenland and Canadian Arctic ice temperature profiles database. The Cryosphere (2023). https://doi.org/10.5194/tc-17-3829-2023
#113 Seroussi, H., Pelle, T., Lipscomb, W. H., Abe-Ouchi, A., Albrecht, T., Alvarez-Solas, J., et al. Evolution of the Antarctic Ice Sheet over the next three centuries from an ISMIP6 model ensemble. Earth’s Future (2024). https://doi.org/10.1029/2024EF004561
#112 Maure, D., Kittel, C., Lambin, C., Delhasse, A., and Fettweis, X. Spatially heterogeneous effect of climate warming on the Arctic land ice. The Cryosphere (2023). https://doi.org/10.5194/tc-17-4645-2023
#111 Surawy-Stepney, T., Hogg, A.E., Cornford, S.L. et al. Episodic dynamic change linked to damage on the Thwaites Glacier Ice Tongue. Nature Geoscience (2023). https://doi.org/10.1038/s41561-022-01097-9
#110 Glaude, Q. et al. Discussing an extreme mock/what-if scenario over the antarctic peninsula: the effect of intense melt on surface mass balance. Bulletin de la Société Géographique de Liège (2023). https://doi.org/10.25518/0770-7576.7039
#109 Saunderson, D. et al. How Does the Southern Annular Mode Control Surface Melt in East Antarctica? Geophysical Research Letters (2024). https://doi.org/10.1029/2023GL105475
#108 Schlemm, T., Feldmann, J., Winkelmann, R., and Levermann, A. Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet. The Cryosphere (2022) https://doi.org/10.5194/tc-16-1979-2022
#107 Macha, J.M.A. et al. Distinct Central and Eastern Pacific El Niño Influence on Antarctic Surface Mass Balance. Geophysical Research Letters (2024). https://doi.org/10.1029/2024GL109423
#106 Nicola, L., Notz, D., and Winkelmann, R. Revisiting temperature sensitivity: how does Antarctic precipitation change with temperature? The Cryosphere (2023). https://doi.org/10.5194/tc-17-2563-2023
#105 Klose, A. K., Donges, J. F., Feudel, U., and Winkelmann, R. Rate-induced tipping cascades arising from interactions between the Greenland Ice Sheet and the Atlantic Meridional Overturning Circulation. Earth Syst. Dynam. (2024). https://doi.org/10.5194/esd-15-635-2024
#104 van Dalum, C.T. et al.First results of the polar regional climate model RACMO2.4. The Cryosphere (2024). https://doi.org/10.5194/tc-18-4065-2024
#103 Cremades, R. et al. Sea-Level Rise Economics: Enhancing Models for Emerging Challenges. (in press).
#102 Berends, C.J., van de Wal, R.S.W. and Zegeling, P.A. Improvements on the discretisation of boundary conditions to the momentum balance for glacial ice. Journal of Glaciology (2024). https://doi.org/10.1017/jog.2024.45
#101 Melet, A., van de Wal, R., Amores, A., Arns, A., Chaigneau, A. A., Dinu, I., Haigh, I. D., Hermans, T. H. J., Lionello, P., Marcos, M., Meier, H. E. M., Meyssignac, B., Palmer, M. D., Reese, R., Simpson, M. J. R., and Slangen, A. B. A. Sea Level Rise in Europe: Observations and projections. State of the Planet (2024). https://doi.org/10.5194/sp-3-slre1-4-2024
#100 Sherwood, S. C., Hegerl, G., Braconnot, P., Friedlingstein, P., Goelzer, H., Harris, N. R. P., et al. Uncertain pathways to a future safe climate. Earth’s Future (2024). https://doi.org/10.1029/2023EF004297
#99 Bradley, A.T. and Hewitt, I.J. Tipping-point in ice-sheet grounding-zone melting due to ocean water intrusion. Nature Geoscience (2024). https://doi.org/10.1038/s41561-024-01465-7
#98 Tollenaar, V., Zekollari, H., Kittel, C. et al. Antarctic meteorites threatened by climate warming. Naure Climate Change (2024). https://doi.org/10.1038/s41558-024-01954-y
#97 Klose, A. K., Coulon, V., Pattyn, F., and Winkelmann, R.: The long–term sea–level commitment from Antarctica, The Cryosphere (in press).
#96 McInnes, K.L., Nicholls, R.J., van de Wal, R. et al. Perspective on Regional Sea-level Rise and Coastal Impacts. Cambridge Prisms: Coastal Futures (in press).
#95 Reinthaler, J. and Paul, F. Methods for Reconstructing Little Ice Age Glacier Surfaces in Novaya Zemlya and the Swiss Alps: Uncertainties and Volume Changes. SSRN (2024). https://www.sciencedirect.com/science/article/pii/S0169555X2400271X?dgcid=author
#94 Hermans, T.H.J et al. Projecting Changes in the Drivers of Compound Flooding in Europe Using CMIP6 Models. Earth’s Future (2024). https://doi.org/10.1029/2023EF004188
#93 Bett, D.T., Bradley, A.T., Williams, C.R. Coupled ice/ocean interactions during future retreat of West Antarctic ice streams in the Amundsen Sea sector. The Cryosphere (2024). https://doi.org/10.5194/tc-18-2653-2024
#92 Bult, S.V., Le Bars, D., Haigh, I.D. et al. The effect of the 18.6-year lunar nodal cycle on steric sea level changes. ESS Open Archive (2024). https://doi.org/10.1029/2023GL106563
#91 Jesse, F., Le Bars, D. and Drijfhout, S. Processes explaining increased ocean dynamic sea level in the North Sea in CMIP6. Environmental Research Letters (2024). https://iopscience.iop.org/article/10.1088/1748-9326/ad33d4
#90 Nicholls, R.J. and Shirzaei, M.. Perspective for Science linked to Pervasive land subsidence in China’s major cities. Perspective in Science (2024). https://www.science.org/doi/10.1126/science.ado9986
#89 Bradley, A.T., Bett, D.T., Holland, P.R. et al. A framework for estimating the anthropogenic part of Antarctica’s sea level contribution in a synthetic setting. Nature Communications Earth and Environment (2024). https://doi.org/10.1038/s43247-024-01287-w
#88 Hanna, E. et al. Short- and long-term variability of the Antarctic and Greenland ice sheets. Nature Reviews Earth & Environment (2024). https://doi.org/10.1038/s43017-023-00509-7
#87 Thiéblemont, R., le Cozannet, G., Rohmer, J. et al.Sea-level rise induced change in exposure of low-lying coastal land: implications for coastal conservation strategies. Anthropocene Coasts (2024). https://doi.org/10.1007/s44218-024-00041-1
#86 Brils, M., Kuipers Munneke, P., Jullien, N. et al. Climatic drivers of ice slabs and firn aquifers in Greenland. Geophysical Research Letters (2024). https://doi.org/10.1029/2023GL106613
#85 Le Cozannet, G. and Cazenave, A. Adaptation to sea level rise in France. Rendiconti Lincei (2024). https://doi.org/10.1007/s12210-024-01225-0
#84 Tollenaar, V. , Zekollari, H, Pattyn, F. et al. Where the White Continent Is Blue: Deep Learning Locates Bare Ice in Antarctica. Geophysical Research Letters (2024). https://doi.org/10.1029/2023GL106285
#83 Stap, L. B., Berends, C. J., and van de Wal, R. S. W. Miocene Antarctic ice sheet area responds significantly faster than volume to CO2-induced climate change. Clim. Past Discuss (2024). https://doi.org/10.5194/cp-20-257-2024
#82 Coulon, V., Klose, A. K., Kittel, C., Edwards, T., Turner, F., Winkelmann, R., and Pattyn, F. Disentangling the drivers of future Antarctic ice loss with a historically-calibrated ice-sheet model. The Cryosphere (2024). https://doi.org/10.5194/tc-18-653-2024
#81 Thiéblemont, R., Le Cozannet, G., D’Anna, M. et al. Chronic flooding events due to sea-level rise in French Guiana. Scientific Reports 13, 21695 (2023). https://doi.org/10.1038/s41598-023-48807-w
#80 Turner, F. et al. Illustrative multi-centennial projections of global mean sea-level rise and their application (2023). https://doi.org/10.1029/2023EF003550
#79 Burgard, C., Jourdain, N.C., Mathiot, P. et al. Emulating present and future simulations of melt rates at the base of Antarctic ice shelves with neural networks. ESS Open Archive (2023). https://doi.org/10.1029/2023MS003829
#78 Kopp, R. E., Garner, G. G., Hermans, T. H. J., Jha, S., Kumar, P., Reedy, A., Slangen, A. B. A., Turilli, M., Edwards, T. L., Gregory, J. M., Koubbe, G., Levermann, A., Merzky, A., Nowicki, S., Palmer, M. D., and Smith, C. The Framework for Assessing Changes To Sea-level (FACTS) v1.0: a platform for characterizing parametric and structural uncertainty in future global, relative, and extreme sea-level change. Geoscientific Model Development (2023). https://doi.org/10.5194/gmd-16-7461-2023, 2023
#77 Noël, B., van Wessem, M., Wouters, B., Trusel, L., Lhermitte, S. and van den Broeke, M.R. Higher Antarctic ice sheet accumulation and surface melt rates revealed at 2 km resolution. Nature Communications (2023). https://doi.org/10.1038/s41467-023-43584-6
#76 van Calcar, C.J., van de Wal, R.S.W., Blank, B., de Boer, B. and van der Wal, W. Simulation of a fully coupled 3D glacial isostatic adjustment – ice sheet model for the Antarctic ice sheet over a glacial cycle. Geoscientific Model Development (2023). https://doi.org/10.5194/gmd-16-5473-2023
#75 Völz, V. and Hinkel, J. Climate learning scenarios for adaptation decision analyses: Review and classification. Climate Risk Management (2023). https://doi.org/10.1016/j.crm.2023.100512
#74 Philippenko, X. and La Cozannet, G. Social science to accelerate coastal adaptation to sea-level rise. Coastal Futures (2023). https://doi.org/10.1017/cft.2023.25
#73 Völz, V. and Hinkel, J. Sea Level Rise Learning Scenarios for Adaptive Decision-Making based on IPCC AR6. Earth’s Future (2023). http://doi.org/10.1029/2023EF003662
#72 Le Cozannet, G., Nicholls, R.J., Durand, G., Slangen, A., Lincke, D. and Chapuis, A. Adaptation to multi-meter sea-level rise should start now. Environmental Research Letters (2023). https://doi.org/10.1088/1748-9326/acef3f
#71 Bevan, S., Cornford, S., Gilbert, L. et al. Amundsen Sea Embayment ice-sheet mass-loss predictions to 2050 calibrated using observations of velocity and elevation change. Journal of Glaciology (2023). https://doi.org/10.1017/jog.2023.57
#70 Keizer, I., Le Bars, D., de Valk, C., Jüling, A., van de Wal, R., and Drijfhout, S.: The acceleration of sea-level rise along the coast of the Netherlands started in the 1960s, Ocean Science (2023). https://doi.org/10.5194/os-19-991-2023
#69 Khojasteh, D., Haghani, M., Nicholls, R.J. et al. The evolving landscape of sea-level rise science from 1990 to 2021. Communications Earth & Environment (2023). https://doi.org/10.1038/s43247-023-00920-4
#68 Berends, C., Stap, L., & Van de Wal, R. (2023). Strong impact of sub-shelf melt parameterisation on ice-sheet retreat in idealised and realistic Antarctic topography. Journal of Glaciology (2023). https://doi.org/10.1017/jog.2023.33
#67 Kopp, R.E., et al. Communicating future sea-level rise uncertainty and ambiguity to assessment users. Nature Climate Change (2023). https://doi.org/10.1038/s41558-023-01691-8, access here.
#66 Reinthaler, J. and Paul, F. Using a Web Map Service to map Little Ice Age glacier extents at regional scales. Annals of Glaciology (2023). https://doi.org/10.1017/aog.2023.39
#65 van der Pol, T., Gussmann, G., Hinkel, J. et al. Decision-support for risk-based land reclamation in the Maldives. Climate risk management (2023). https://doi.org/10.1016/j.crm.2023.100514
#64 Hirschfeld, D. et al., Practionner needs to adapt to sea-level rise: distilling information from global workshops. Climate risk management (2023). https://doi.org/10.1016/j.cliser.2024.100452
#63 van den Broeke, M.R., Kuipers Munneke, P. and Noël, B. Contrasting current and future surface melt rates on the ice sheets of Greenland and Antarctica: lessons from in situ observations and climate models. PLOS Climate (2023). https://doi.org/10.1371/journal.pclm.0000203
#62 Berends, C.J., van de Wal, R.S.W., van den Akker, T. and Lipscomb, W.H. Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response. The Cryosphere (2023). https://doi.org/10.5194/tc-17-1585-2023
#61 Malagón-Santos, V., Slangen, A.B.A, Hermans, T.H.J, et al. Improving Statistical Projections of Ocean Dynamic Sea-level Change Using Pattern Recognition Techniques. Ocean Science (2023). https://doi.org/10.5194/os-19-499-2023
#60 Scanlan, K.M., Rutishauser, A. and Simonsen, B.S. Observing the near-surface properties of the Greenland ice sheet. Geophysical Research Letters (2023). https://doi.org/10.1029/2022GL101702
#59 Gómez-Valdivia, F., Holland, P.R., Siahaan, A. et al. Projected West Antarctic ocean warming caused by an expansion of the Ross Gyre. Geophysical Research Letters (2023). https://doi.org/10.1029/2023GL102978
#58 Hermans, T., Malagón-Santos, V., Katsman, C.A. et al. The Timing of Decreasing Coastal Flood Protection Due to Sea-Level Rise. Nature Climate Change (2023). https://doi.org/10.1038/s41558-023-01616-5
#57 Hinkel, J., Garcin, M., Gussmann, G., et al. Co-creating a coastal climate service to prioritise investments in erosion prevention and sea-level rise adaptation in the Maldives. Climate Services (2023). https://doi.org/10.1016/j.cliser.2023.100401
#56 Scherrenberg, M. D. W., Berends, C. J., Stap, L. B., and van de Wal, R. S. W.: Interactions between the Northern-Hemisphere ice sheets and climate during the Last Glacial Cycle. Clim. Past Discuss (2023). https://doi.org/10.5194/cp-19-399-2023
#55 Jordan, J., Gudmundsson, G.H., Jenkins, A., Stokes, C.R. et al. Increased warm water intrusions could cause mass loss in East Antarctica within 200 years. Nature Communications (2023). https://doi.org/10.1038/s41467-023-37553-2
#54 Hirschfeld, D., Bell, R., Behar, D., Nicholls, R. et al. A Global Survey of the application of Sea-Level Projections. Nature Communications Earth & Environment (2023). https://doi.org/10.1038/s43247-023-00703-x
#53 van Wessem, J.M., van den Broeke, M.R., Wouters, B. and Lhermitte. S.. Variable temperature thresholds for melt pond formation on Antarctic ice shelves. Nature Climate Change (2023). https://doi.org/10.1038/s41558-022-01577-1
#52 Holland, P. et al. Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries. The Cryosphere (2022). https://doi.org/10.5194/tc-16-5085-2022
#51 Slangen, A.B.A., Palmer, M.D., Camargo, C.M.L. et al. The evolution of 21st century sea-level projections from IPCC AR5 to AR6 and beyond. Coastal Futures (2022). https://doi.org/10.1017/cft.2022.8
#50 Lincke, D., Hinkel, J., Mengel, M., Nicholls, RJ. Understanding the drivers of coastal flood exposure and risk from 1860 to 2100. Earths Future (2022). http://dx.doi.org/10.1029/2021EF002584
#49 Burgard, C. Jourdain, N.C., Reese, R. et al. An assessment of basal melt parameterisations for Antarctic ice shelves. The Cryosphere (2022). https://doi.org/10.5194/tc-16-4931-2022
#48 Rohmer, J., Thieblemont, R., Le Cozannet, G., Goelzer, H. and Durand, G. Improving interpretation of sea-level projections through a machine-learning-based local explanation approach. The Cryosphere (2022). https://doi.org/10.5194/tc-16-4637-2022
#47 Nienhuis, J.H., Kim, W., Milne, G.A. et al. River Deltas and Sea-Level Rise. Annu. Rev. Earth Planet. Sci. (2022). https://doi.org/10.1146/annurev-earth-031621-093732
#46 Jourdain, N.C., Mathiot, P., Burgard, C., Caillet, J. and Kittle, C. Ice shelf basal melt rates in the Amundsen Sea at the end of the 21st century. Geophysical Research Letters (2022). https://doi.org/10.1029/2022GL100629
#45 Noël, B., Lenaerts, J.T. M., Lipscomb, W.H., Thayer-Calder, K., and van den Broeke, M.R. Peak refreezing in the Greenland firn layer under future warming scenarios. Nature Communications (2022). Accessible here: https://rdcu.be/cZPvz
#44 van de Wal, R. S. W., Nicholls, R. J.,Behar, D. et al. A high-end estimate of sea-level rise for practitioners. Earth and Space Science Open Archive (2022). https://doi.org/10.1029/2022EF002751
#43 Armstrong McKay, D.I. et al. (2022): Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science (2022). doi.org/10.1126/science.abn7950
#42 Fang, J., Nicholls,R.J., Brown, S., Lincke, D., Hinkel, J. et al. Benefits of subsidence control for coastal flooding in China. Nature Communications (2022). https://doi.org/10.1038/s41467-022-34525-w
#41 Huai, B., van den Broeke, M.R., Reijmer, C.H. and Noël. B. A daily, 1 km resolution Greenland rainfall climatology (1958-2020) from statistical downscaling of a regional atmospheric climate model. Journal of Geophysical Research: Atmosphere (2022). https://doi.org/10.1029/2022JD036688
#40 van Tiggelen, M., Smeets, P.C.J.P., Reijmer, C.H.,et al. Observed and parameterised roughness lengths for momentum and heat over rough ice surfaces. Journal of Geophysical Research: Atmosphere (2023). https://doi.org/10.1029/2022JD036970
#39 Berends, C.J., Goelzer, H., Reerink, T.J., Stap, L.B. and van de Wal, R.S.W. Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0). Geoscientific Model Development (2022). https://doi.org/10.5194/gmd-15-5667-2022
#38 Compagno, L., Huss, M., Zekollari, H. et al. Future growth and decline of High Mountain Asia’s ice-dammed lakes and associated risk. Communications Earth & Environment (2022). https://doi.org/10.1038/s43247-022-00520-8
#37 Le Cozannet, G., Nicholls, R.J., Van de Wal, R., Sparrow, M.D., Li, J. and Billy, J. Editorial: Climate Services for Adaptation to Sea-Level Rise. Frontiers in Marine Science (2022). https://doi.org/10.3389/fmars.2022.943079
#36 Stokes, C.R., Abram, N.J., Bentley, M.J., Edwards, T.L., et al. Response of the East Antarctic Ice Sheet to Past and Future Climate Change. Nature (2022). https://doi.org/10.1038/s41586-022-04946-0. Download the accepted manuscript here.
#35 Zekollari, H., Huss, M., Farinotti, D., Lhermitte, S. Ice-dynamical Glacier Evolution Modelling – A review. Reviews of Geophysics (2022). https://doi.org/10.1029/2021RG000754
#34 Compagno, L., Huss, M., Miles, E.S. et al. Modelling supraglacial debris-cover evolution from the single glacier to the regional scale: an application to High Mountain Asia. The Cryosphere (2022). https://doi.org/10.5194/tc-16-1697-2022
#33 Kazmierczak, E., Sun, S., Coulon, V. and Pattyn, F. Subglacial hydrology modulates basal sliding response of the Antarctic ice sheet to climate forcing. The Cryosphere (2022). https://doi.org/10.5194/tc-16-4537-2022
#32 Slangen, A.B.A., Haasnoot, M. and Winter, G. Rethinking Sea-Level Projections using Families and Timing Differences. Earth’s future (2022). https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021EF002576
#31 Stap, L.B., Brends, C.J., Scherenberg, M.D.W, et al. Net effect of ice-sheet–atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability. The Cryosphere (2022). https://doi.org/10.5194/tc-16-1315-2022
#30 van Dalum, C.T., van de Berg, W.J. and van den Broeke, M. Sensitivity of Antarctic surface climate to a new spectral snow albedo and radiative transfer scheme in RACMO2.3p3. The Cryosphere (2022). https://doi.org/10.5194/tc-16-1071-2022
#29 Hansen, N., Simonsen, S.B., Boberg, F. et al. Brief communication: Impact of common ice mask in surface mass balance estimates over the Antarctic ice sheet. The Cryosphere (2022). https://doi.org/10.5194/tc-16-711-2022
#28 Noël, B., Aðalgeirsdóttir, G., Pálsson, F. et al. North Atlantic cooling is slowing down mass loss of Icelandic glaciers. Geophysical Research Letters (2022). https://doi.org/10.1029/2021GL095697
#27 Durand, G., Van den Broeke, M., Le Cozannet, G, Edwards, T. et al. Sea-Level Rise: From Global Perspectives to Local Services. Frontiers in Marine Science (2022). https://doi.org/10.3389/fmars.2021.709595
#26 Boberg, F., Mottram, R., Hansen, N., Yang, S. and Langen, P.L. Uncertainties in projected surface mass balance over the polar ice
sheets from dynamically downscaled EC-Earth models. The Cryosphere (2022). https://doi.org/10.5194/tc-16-17-2022
#25 Hu, Z., Kuipers Munneke, P., Lhermitte, S., Izeboud, M., Van den Broeke, M. Improving surface melt estimation over the Antarctic Ice Sheet using deep learning: a proof of concept over the Larsen Ice Shelf. The Cryosphere (2021). https://doi.org/10.5194/tc-15-5639-2021
#24 Bisaro, A., Hinkel, J., Le Cozannet, G. et al. Global climate services: a typology of global decisions influenced by climate risk. Frontiers in Marine Science (2021). https://doi.org/10.3389/fmars.2021.728687
#23 Klose, A.K., Wunderling, N., Winkelmann R., and Donges, J.F. What do we mean, ‘tipping cascade’? Environmental Research Letters (2021). https://iopscience.iop.org/article/10.1088/1748-9326/ac3955
#22 Nicholls, R. J., Beaven, R., Stringfellow, A., et al. Coastal landfills and rising sea levels: a challenge for the 21st century. Frontiers in Marine Science (2021). https://doi.org/10.3389/fmars.2021.710342
#21 Beaumet, J., Déqué, M., Krinner, G., et al. Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections. The Cryosphere (2021). https://doi.org/10.5194/tc-15-3615-2021
#20 Huai, B., van den Broeke, M.R., Reijmer, C.H. and, Cappellen, J. Quantifying rainfall in Greenland: a combined observational and modelling approach. Journal of Applied Meteorology and Climatology (2021). https://doi.org/10.1175/JAMC-D-20-0284.1
#19 Mottram, R., Hansen, N., Kittel, C., et al. What is the Surface Mass Balance of Antarctica? An Intercomparison of Regional Climate Model Estimates. The Cryosphere (2021). https://doi.org/10.5194/tc-15-3751-2021
#18 Hansen, N., Langen, P.L., Boberg, F. et al. Downscaled surface mass balance in Antarctica: impacts of subsurface processes and large-scale atmospheric circulation. The Cryosphere (2021). https://doi.org/10.5194/tc-2021-69
#17 Coulon, V., Bulthuis, K., Whitehouse, P.L., et al. Contrasting responses of West and East Antarctic ice sheets to Glacial Isostatic Adjustment. Journal of Geophysical Research: Earth Surface (2021). https://doi.org/10.1029/2020JF006003
#16 Amory, C., Kittel, C., Le Toumelin, L. et al. Performance of MAR (v3.11) in simulating the drifting-snow climateand surface mass balance of Adelie Land, East Antarctica. Geoscientific Model Development (2021). https://doi.org/10.5194/gmd-14-3487-2021
#15 Kittel, C., Amory, C., Agosta, C., et al. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. The Cryosphere (2021). https://doi.org/10.5194/tc-15-1215-2021
#14 Krebs-Kanzow, U., Gierz, P., Rodehacke, C.B., et al. The diurnal Energy Balance Model (dEBM): A convenient surface mass balance solution for ice sheets in Earth System modeling. The Cryosphere (2021). https://doi.org/10.5194/tc-15-2295-2021
#13 van Wessem, J. M., Steger, C.R., Wever, N. and van den Broeke, M.R. An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979-2016. The Cryosphere (2021). https://doi.org/10.5194/tc-15-695-2021
#12 Edwards, T., Nowicki, S., Marzeion, B. et al. Projected land ice contributions to 21st century sea level rise. Nature (2021). https://www.nature.com/articles/s41586-021-03302-y#disqus_. Download the publication here.
#11 Noël, B., van Kampenhout, L., Lenaerts,J. T. M., et al. A 21st Century Warming Threshold for Sustained Greenland Ice Sheet Mass Loss. Geophysical Research Letters (2021). https://doi.org/10.1029/2020GL090471
#10 Jakobs, C.L., Reijmer, C.H., van den Broeke, M.R., et al. Spatial Variability of the Snowmelt-Albedo Feedback in Antarctica. Journal of Geophysical Research: Earth Surface (2021). https://doi.org/10.1029/2020JF005696
#9 Nicholls, R.J., Hanson, S.E., Lowe, J.A., et al. Integrating new sea-level scenarios into coastal risk and adaptation assessments: an on-going process. Wires Climate Change (2021). https://doi.org/10.1002/wcc.706
#8 Nicholls, R.J., Lincke, D., Hinkel, J., et al. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change (2021). https://www.nature.com/articles/s41558-021-00993-z. Download the pdf here.
#7 Delhasse, A., Hanna, E., Kittel, C., Fettweis, X. Brief communication: CMIP6 does not suggest any atmospheric blocking increase in summer over Greenland by 2100. International Journal of Climatology (2020). https://doi.org/10.1002/joc.6977
#6 Donat-Magnin, M., Jourdain, N. C., Kittel, C., Agosta, C., Amory, C., Gallée, H., Krinner, G., and Chekki, M. Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet. The Cryosphere (2021). https://doi.org/10.5194/tc-15-571-2021
#5 Hofer, S., Lang, C., Amory, C. et al. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6. Nature Communication 11, 6289 (2020). https://doi.org/10.1038/s41467-020-20011-8
#4 Payne, A., Nowicki, S., Abe-Ouchi, A. et al. Future sea level change under CMIP5 and CMIP6 scenarios from the Greenland and Antarctic ice sheets, Geophysical Research Letters (2021). https://doi.org/10.1029/2020GL091741
#3 Fettweis, X., Hofer, S., Krebs-Kanzow, U. et al. GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. The Cryosphere, 14, 1–24 (2020). https://doi.org/10.5194/tc-14-3935-2020
#2 Huai, B., van den Broeke, M. and Reijmer, C. Long term surface energy balance of the western Greenland Ice Sheet and the role of large-scale circulation variability. The Cryosphere, 14, 4181–4199 (2020). https://tc.copernicus.org/articles/14/4181/2020/
#1 Krinner, G., Kharin, V., Roehrig, R. et al. Historically-based run-time bias corrections substantially improve model projections of 100 years of future climate change. Commun Earth Environ 1, 29 (2020). https://doi.org/10.1038/s43247-020-00035-0